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Abstract
If a mesoscopic system is non-chaotic or non-ergodic then the thermodynamic and transport
properties do not depend on the impurity averaged density of states. We show that the partial
density of states as well as the density of states of a given system with a given impurity
configuration can be determined exactly from the asymptotic wavefunction (or scattering
matrix) at the resonances. The asymptotic wavefunction can be determined experimentally
without any knowledge about the quantum mechanical potential (including electron–electron
interaction) or wavefunction in the interior of the system. Some counterintuitive relations
derived here allow this.

For bulk samples, ensemble averaging makes it unnecessary
to know the exact impurity configuration and the exact
Hamiltonian of the sample. This is because experiments
can only observe ensemble averaged physical properties.
Ensemble averaging works because of the well known
ergodicity hypothesis and the fact that sample to sample
fluctuations are not very large [1]. For mesoscopic systems,
even when dealing with an ensemble, sample to sample
fluctuations are often so large that we cannot talk of any
averaged physical quantity [2]. If disorder averaging cannot
be done, then it becomes necessary to know the exact impurity
configuration of a system, a seemingly impossible task for
an experimentalist. Also sometimes for mesoscopic systems
ergodicity itself does not hold for a single sample, a fact
which is further illustrated later. Assumption of equal a priori
probability also breaks down. In this work we derive some
exact relations. These relations are not only counterintuitive
but can also provide a way for experimentalists to bypass the
requirement of knowledge of the exact Hamiltonian of the
system to arrive at thermodynamic and transport properties of
a mesoscopic system.

Consider an arbitrary potential V (x, y) in the shaded
region� of figure 1. The z degree of freedom is usually frozen
due to strong confinement in the z direction. This potential
defines a mesoscopic system that could be a quantum dot or
a quantum ring or anything else [3]. Typically such a system
is coupled to leads or measuring probes. The leads connect
the system to reservoirs that are at fixed chemical potentials.
The reservoirs inject (or absorb) electrons to (or from) the
system through the leads. We consider quasi-one-dimensional
(Q1D) single-channel leads as in most experiments. When
leads are multichannel, we do not have enough control over
the properties of the system to make it of practical use [2]. By

Figure 1. A mesoscopic system (shaded region) coupled to
reservoirs through leads. The origin of the coordinates is shown. The
figure is drawn in the most general way. Normally, if F(x) and G(x)
are smooth functions and the potential in the shaded region has some
symmetries, then the system can be non-ergodic. Also if F(x) and
G(x) are extremely rough then there can be localized states, surface
localized states and scarred states which again can make the system
non-ergodic. Our mathematical analysis is for any arbitrary F(x) and
G(x). Equations (2)–(6) define the quasi-one-dimensional nature of
the system and the leads.

taking specific forms of V (x, y) we can control the strength
of the coupling between the system and the leads. This is
explained in more detail later. For a fully chaotic (or ergodic)
system (such that equal a priori probability is expected),
electrons will access all the states in the system especially
when the coupling to the leads is very weak and the electron
spends sufficient time in the system. However, for a non-
chaotic (or non-ergodic) system, all the states will not be
accessed (breakdown of equal a priori probability). Only
part of the states will be accessed which depends on the
position and details of the leads and the system, that will
constitute the partial density of states (PDOS). For mesoscopic
systems, even a chaotic system may not exhibit equal a priori
probability [4]. So the contribution of these electrons to
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thermodynamic observables like the quantum capacitance and
heat capacity of the system, as well as the linear response
non-equilibrium effects, will be determined by this PDOS [5].
This PDOS cannot be determined from the Hamiltonian of
the isolated system as the PDOS depends on initial conditions
(that is, through which lead the electrons enter the system and
through which lead they leave, as well as the characteristics
of the leads and that of the system). However, the scattering
matrix depends on these factors. So the scattering matrix has
more information than the Hamiltonian of the isolated system
and the scattering matrix formulation is very important for
mesoscopic systems [6]. For a recent review on mesoscopic
transport we refer the reader to [7].

The many-body Hamiltonian for an N-particle system
is a function of 3N coordinates. It has been proved that
the motion of one of these N particles is governed by an
effective potential that is just a one-body potential and a
function of three coordinates [8]. This is known as the
Hohenberg–Kohn theorem and it is exact. So in the preceding
paragraph, when we refer to the confining potential V (x, y) of
the system, we are referring to this one-body effective potential
Veff, that includes electron–electron interaction exactly. The
determination of this one-body potential is however very
difficult and has until now not been obtained exactly [9].
Approximate schemes like local density approximations are
used. For bulk systems these are fairly good, although
approximate methods are used for obtaining the effective
potential, but the same need not be the case for finite systems.
So for mesoscopic systems, if we can bypass the determination
of the internal details, the exact Hamiltonian and the effective
potential of the system, by using the S-matrix then the S-matrix
includes the effect of electron–electron interaction exactly.
However, we would like to mention that electron–electron
interaction can in principle be obtained for finite systems but
the impurity configuration, in principle, cannot be known. This
makes the single-particle scattering problem more formidable
than many-body effects.

The approach proposed in this paper is due to some recent
experiments [10, 11] that are motivated by the possibility
of obtaining important information from the scattering phase
shift. So the present work is an effort to identify information
that can be obtained from such experiments. A series of
experiments [12, 13] also tell us that resonances in such
a system as that schematically shown in figure 1 are Fano
resonances. Recently it has been shown for a delta function
potential in a quantum wire that at the Fano resonance the
density of states (DOS) and partial density of states (PDOS)
can be determined exactly from semi-classical formulae
involving the energy derivative of scattering phase shift (the
Friedel sum rule or FSR), although the Fano resonance is a
purely quantum phenomenon [14]. Hence earlier works [14]
are for a specific potential V (x, y) = γ δ(x − xi)δ(y −
yi) and hence of academic interest. In the first of these
works the DOS was explicitly calculated from the integration
of the wavefunction for the δ function potential and it was
shown graphically as well as mathematically that FSR becomes
exact at the Fano resonance. In the second of these works
the quantum regime and semi-classical regime of the above

mentioned δ function potential were identified and it was
shown that FSR becomes exact in a quantum regime. A
physical picture was provided, based on the dispersion of
wavepackets, showing why FSR becomes exact in the quantum
regime of the above mentioned potential. In this work we
show that FSR becomes exact at a Fano resonance for any
general potential V (x, y) that can define a real disordered (or
clean) ring or dot. Thus the results can be practically used as
described earlier.

We shall use the following identity to arrive at our
conclusions. It can be rigorously derived for one dimension
(1D) and is naturally also true for the quasi-one-dimensional
(Q1D) case [15] that involves tracing over the sub-band index.
In simpler form [16], for any such system schematically shown
in figure 1,

−
∫
�′

d3r�∗
mn

δ�mn

δV (r)
= �∗

mn

d�mn

dEm
+ 1

4Em
(�mn −�∗

mn). (1)

Here � denotes the scattering matrix and Em denotes the
kinetic energy in the mth channel which is further defined
below. �′ is the volume of the region where the wavefunction
is different from the asymptotic wavefunctions and it may or
may not coincide with�, depending on the scattering potential.

The Schrödinger equation describing the system is

− h̄2

2μ

(
∂2

∂x2
+ ∂2

∂y2

)
ψ(x, y)+ V (x, y)ψ(x, y) = Eψ(x, y).

(2)
For |x | < a, V (x, y) has to be such that it can create at least
one bound state (otherwise there will be no Fano resonance).
For |x | � a, V (x, y) = Vc(y), where Vc(y) is the confinement
potential in the leads. The most general solution to equation (2)
in the different regions of figure 1 is

ψ(L)(x, y) = eikm x

√
km
θm(y)+

∞∑
n=1

e−ikn x

√
kn

rnmθn(y)

(x � −a) (3)

ψ(R)(x, y) =
∞∑

n=1

eikn x

√
kn

tnmθn(y) (x � a). (4)

Here θn(y) is the solution to the following equation that holds
for |x | � a:

[
− h̄2

2μ

∂2

∂y2
+ Vc(y)

]
θn(y) = εnθn(y). (5)

Therefore,

E = εn + h̄2k2
n

2μ
= εn + En . (6)

If εn > E , then one can see from equation (6) that kn is
imaginary (the mode is evanescent). The electron is incident
along the mth channel which implies εm < E . For all n � m,
εn < E and such channels are propagating. For n > m,
εn > E , implying that these channels are evanescent. For
n � m, rnm and tnm give the reflection and transmission
amplitudes, respectively. They also constitute the elements of
the scattering matrix �. For n > m, tnm and rnm give the
amplitude of transition from the propagating mode to the nth
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evanescent mode in the right lead and left lead, respectively.
However, they are not scattering matrix elements.

We can now define two functions ψ(ev)(x, y) and
ψ(od)(x, y) such that ψ(ev)(x, y) = ψ(ev)(−x, y) and
ψ(od)(x, y) = −ψ(od)(−x, y):

ψ(ev)(x, y) =
∞∑

n=1

(δnme−ikn x − S(ev)
nm eikn x)

θn(y)√
kn

(7)

ψ(od)(x, y) =
∞∑

n=1

(δnme−ikn x − S(od)
nm eikn x)

θn(y)√
kn
. (8)

Then one can see that ψ(L) as well as ψ(R) is given by

1
2 (ψ

(ev) − ψ(od)) (9)

where
rnm = −(S(od)

nm + S(ev)
nm )/2 (10)

tnm = (S(od)
nm − S(ev)

nm )/2. (11)

This works because any function can be written as a sum
of an even function and an odd function. And any square
matrix can be written as a sum of a symmetric matrix and an
antisymmetric matrix.

Due to the same principle, the wavefunction in the
scattering region can be written as a sum of an even function
and an odd function. We denote them as φ(ev)

n (x, y) and
φ(od)

n (x, y):

φ(ev)
n (x, y) =

∞∑
m=1

cmχ
(ev)
m (x, y) (12)

φ(od)
n (x, y) =

∞∑
m=1

cmχ
(od)
m (x, y) (13)

where χ(ev) and χ(od) satisfy the Schrödinger equation (2) with
V (x, y) = 0 in the region �. Therefore χ(ev) and χ(od) will
satisfy the following equations:

χ(eo)
m (a, y) = θm(y) for |y| � b (14)

χ(eo)
m (x, y) = 0 for y = F(x) or G(x) (15)

χ(ev)
m (x, y) = χ(ev)

m (−x, y) (16)

χ(od)
m (x, y) = −χ(od)

m (−x, y). (17)

F(x) and G(x) define the two curves at the upper and lower
boundaries of the region �. Here ‘eo’ stands for ‘ev’ or ‘od’.
One can define the following matrix elements:

F (eo)
n,m = 1

b(kmkn)
1
2

∫ b

−b
θn(y)

(
∂χ(eo)

m

∂x

)
x=a

dy. (18)

Now we require φ(eo)
n and ∂φ

(eo)
n

∂x to be continuous at x = a
for all |y| � b. Thus we get

∞∑
m=1

(δn,me−ikm a − S(eo)
m,n eikm a)

θm(y)√
km

=
∞∑

m=1

cmθm(y) (19)

−
∞∑

n=1

i
√

km(δn,me−ikm a + S(eo)
m,n eikm a)θm(y)

=
∞∑

m=1

cm

(
∂χ(eo)

m

∂x

)
x=a

. (20)

Multiplying equations (19) and (20) with 1
bθn(y) and

integrating from y = −b to b and then combining them we
get a single matrix equation:

∞∑
m=1

(F (eo)
qm − iδqm)e

ikm a S(eo)
mn = (F (eo)

qn + iδqn)e
−ikn a (21)

or
S(eo)

mn = e−ikm a[1 + 2i(F (eo) − i1)−1]mne−ikn a . (22)

It is known in scattering theory that the bound states of
the potential V (x, y) can also be obtained from equations (7)
and (8) by omitting the terms δnmeikn x . Without this term
equations (7) and (8) are solutions to the equation (2) with
correct boundary condition wherein there is no incident wave.
Analysis identical to that leading to equation (21) in this case
gives

∞∑
m=mt

[F (eo)
qm − iδqm]e−κma S(eo)

mn = 0. (23)

Here mt is the threshold value of m for which bound states
exist. And κm = ikm . For m < mt states will be scattering
states. Supposing that only the first channel is propagating,
then mt = 2. This will be further illustrated soon. Solutions to
equation (23) or solutions to the following equation will give
bound states:

det[Feo
cc − i1] = 0. (24)

Here ‘cc’ means closed channel (i.e., channels for which m �
mt). Let us partition F (eo) into propagating and evanescent (or
closed) channels:

F (eo) =
(

F (eo)
pp F (eo)

pc

F (eo)
cp F (eo)

cc

)
. (25)

Therefore,(
F (eo)

pp − i1 F (eo)
pc

F (oe)
cp F (eo)

cc − i1

)(
F (eo)

pp − i1 F (eo)
pc

F (oe)
cp F (eo)

cc − i1

)−1

=
(

1 0
0 1

)
. (26)

From this one can show that

[(F (eo) − i1)−1]pp = [F (eo)
pp − i1 − F (eo)

pc (F (eo)
cc − i1)−1 F (eo)

cp ]−1.

(27)
So from equations (22) and (27) (for m and n being

propagating channels)

S(eo)
mn = e−ikm a[1 + 2i[F (eo)

pp

− F (eo)
pc (F (eo)

cc − i1)−1 F (eo)
cp − i1]−1]mne−ikn a

= e−ikm a[(G(eo) − i1)−1(G(eo) + i1)]mne−ikn a (28)

where

G(eo)
mn = [F (eo)

pp − F (eo)
pc (F (eo)

cc − i1)−1 F (eo)
cp ]mn . (29)

If there is only one propagating channel, then m = n = 1.
Also for one propagating channel, p = 1. Hence G(eo)

becomes a number. Therefore, from equation (28)

S(eo)
11 = e−2ik1a G(eo) + i

G(eo) − i
= e2i(arccot[G(eo)]−k1a) = e2iδ(eo)

(30)
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where

G(eo) = F (eo)
11 −

∑
m=2,n=2

F (eo)
1m [(F (eo)

cc − i1)−1]mn F (eo)
n1 (31)

and
δ(eo) = arccot[G(eo)]. (32)

Note that for equation (1), the definition of the scattering
phase shift requires us to absorb the term k1a in δ(eo).
All of the infinite Smn appear in S11 through Fcc, which
carries information for the entire Hilbert space accessed by
the incident wave. For non-ergodic systems there can be
many more states not accessed by the incident wave, i.e., the
transition amplitude between these states and the incident wave
being 0. These states are not populated. So they contribute
neither to the DOS and PDOS nor to the scattering matrix.
Trivial examples are cases like that when the incident wave has
a certain symmetry that is incompatible with the symmetry of
these states. More generally, there can be localized and scarred
states that are known to occupy a subset of the Hilbert space
and do not connect to the rest. Once again the position and
characteristics of the leads will determine which states will be
accessed and which not. Due to ergodicity, bulk samples are
isotropic, wherein the correlation function between two points
depends on the separation between the points and not on the
position of the points. For such ergodic bulk samples the PDOS
is an ill-defined quantity. If equal a priori probability holds,
then by definition the PDOS cannot exist.

Threshold energy E for the second channel is given by
2μ
h̄2 (E − ε2) > 0. Below this energy the second channel can
have bound states. Such bound states will occur at energies
given by the solution to equation (24). At these energies the
first channel will be propagating as its threshold is given by
2μ
h̄2 (E − ε1) > 0 and S11 is given by equation (30). But at

these energies G(eo) will diverge as it includes matrix elements
of [F (eo)

cc − i1]−1 as can be seen from equations (31) and (24).
That in turn implies that at a Fano resonance (as can be seen
from equation (32))

δ(ev) = mπ and δ(od) = nπ. (33)

This is consistent with the fact that at the Fano resonance t11 =
0 (which is a necessary requirement for a Fano resonance) as
can be seen from equations (11), (30) and (33). Therefore
t11 − t∗

11 = 0 at the Fano resonance. Also from equations (10)

and (33) at the Fano resonance r11 = − cos(2δ(ev))+cos(2δ(od))

2 and
hence

r11 − r∗
11 = 0. (34)

Transmission zero (t11 = 0) does not guarantee that the
right-hand side (RHS) of the above equation becomes 0,
because one can see from equations (11) and (30) that t11 =
e2iδ(od)−e2iδ(ev)

2 . Hence t11 = 0 can be due, at some energies, to
δ(od) = δ(ev), none of them being an integer times π . Only
equation (33) obtained from a Fano resonance makes the RHS
of equation (34) be 0. Therefore, at the Fano resonance

�−�† =
(

r11 − r∗
11 t11 − t∗

11
t11 − t∗

11 r∗
11 − r11

)
= 0. (35)

Therefore at the Fano resonance, from equations (1)
and (35),

− 1

4π i

∫
�′

d3r�∗
mn

δ�mn

δV (r)
− H C = 1

4π i

(
�∗

mn

d�mn

dE
− H C

)

= 1

2π
|�mn|2 d[Arg(�mn)]

dE
. (36)

Here Arg(�mn) = Arctan Im�mn
Re�mn

. The complicated integral
involving the local potential on left-hand side (LHS) is the
PDOS for an electron incident in channel n and scattered
to channel m. So at the Fano resonance the PDOS can be
determined exactly from the scattering phase shift d[Arg(�mn)]

dE
and |�mn|2. If m = 1 and n = 2 then the RHS of (36)
is 1

2π |t11|2 dArg(t11)

dE . Both these quantities (|t11|2 and Arg(t11)

i.e., transmission probability and transmission phase) were
measured in [10, 12, 13]. So the LHS which is the PDOS for
a transmitted particle in the above mentioned experiments can
be obtained from the experimental data at the Fano resonance.
Summing over m and n we get at the Fano resonance

− 1

4π i

∑
mn

∫
�′

d3r�∗
mn

δ�mn

δV (r)
− H C = d[ 1

2π log Det[�]]
dE

=
[
|r11|2 dArg(r11)

dE
+ |t11|2 dArg(t11)

dE

]/
π (37)

which is the Friedel sum rule. Here again |r11|2 is reflection
probability and Arg(r11) is reflection phase. The LHS is the
DOS and the RHS is same as the RHS of equation (36) summed
over m and n and simplified. So in this case apart from the data
of [10, 12, 13] one needs similar data for the reflected electrons.
This was done in [17].

FSR is expected to hold only for bulk samples that are
in the semi-classical limit. For finite systems that are in
a quantum regime there is always a correction term arising
from 1

4Em
(�mn − �∗

mn). For semi-classical systems this
term is small. For details one can see [16] and references
therein. Semi-classical behaviour occurs when the energy Em

is large compared to the potential because then the de Broglie
wavelength is much smaller than the scales determining the
potential. (�mn − �∗

mn) depends on the characteristics and
scales of the potential. Essentially at high energies nothing is
reflected, typically like the case for a classical particle. Fano
resonances are different. These can occur at high energies and
can also occur at low energies. Around a Fano resonance,
quantum mechanical reflection is very high, phase fluctuations
are very strong; and it is due to pure quantum interference
effects. In Q1D, although the Fano resonance is a purely
quantum interference phenomenon, the correction terms are
exactly 0 making the Friedel sum rule exact. The correction
terms are extremely non-universal (resonances are generally
characterized by the line shape, i.e., |�mn|2, and scattering
phase shifts, Arg(�mn)), and also depend on sample specific
parameters (e.g., Em depends on Vc(y) as well as material
parameters like the bottom of the conduction band, effective
mass μ, etc).

In regimes where the single-particle picture is valid (it is
always valid when Coulomb interaction can be ignored and
sometimes valid even in the presence of Coulomb interactions
through an effective potential Veff), most mesoscopic systems

4
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coupled to leads can be described using a Schrödinger equation
of the form given in equation (2). For example, if F(x) =√

R2 − x2, G(x) = −√
R2 − x2 and V (x, y) = −V0 +

ran(x, y) + Veff, where ran(x, y) is a random function of x
and y and V0 is a positive constant, then we get a disordered
circular dot coupled to leads. If we set V (x, y) = −V0 + Veff

then we get a clean circular dot. Dropping the interaction
term, if we set V (x, y) = per(x, y) + ran(x, y) − V0 where
per(x, y) is a periodic potential, then it can account for the
underlying lattice structure. If we take V (x, y) = VL for
(a − ε) < |x | < a and V (x, y) = ran(x, y)− V0 in the rest of
the shaded region in figure 1, then we get a disordered circular
dot weakly coupled to leads. Here VL is a large potential and
ε is a small number. Alternatively, we can make F(x) = ∞,
G(x) = −∞ and V (x, y) = A(x2 + y2)+ ran(x, y); then we
get a disordered parabolic dot (the potential in the leads has to
be suitably chosen). Likewise one can choose various forms of
Vc(y) to account for different kinds of leads. Our results are
independent of all the details, which means that equations (36)
and (37) will be exact at the resonances.

Nevertheless there can be excitations that are not described
by density functional theory like single-particle theory cases,
for which systems our work is not relevant. Examples
include excitonic and polaronic excitations. There is also
some debate regarding whether single-particle theories can be
applied to quantum dots [18–20]. In [21], Yannouleas and
Landman discuss the applicability of single-particle models
with reference to the Wigner parameter RW and the formation
of Wigner molecules when RW > 1. RW is the ratio
of the strength of the Coulomb interaction over that of the
kinetic energy. Single-particle descriptions are applicable for
RW < 1, that is the regime of weak to moderate many-
body correlations. We would like to point that firstly there
exists a proof that FSR (equation (37)) is valid for interacting
electrons where the proof is not restricted to single-particle
theories for interactions but rather uses some theorems from
number theory. And secondly our proof does not require the
nature of the wavefunction inside the dot (single particle or
many body) but only requires the structure of the wavefunction
far away from the dot, given by equations (3) and (4), which
has been at least confirmed in the experiments of Kobayashi
et al [12, 13]. Thirdly our result is more useful for non-
interacting small systems where we cannot know the impurity
configuration inside the system, that can be a ring or a wire.

In conclusion, the Friedel sum rule and similar semi-
classical formulae (equations (36) and (37)) become exact
at resonances for any general potential in a single-channel
Q1D case that can support a resonance. This is very
counterintuitive as the Fano resonance is a purely quantum
phenomenon. We do not know of any other situation where
semi-classical formulae can become exact, as the mesoscopic
world is always quantum. A semi-classical formula can at
most be a good approximation. Thereby, the experimental data
of [10, 12, 13] carry important information. Using such data,
experimentalists can bypass the requirement of knowledge
of the microscopic Hamiltonian to find the DOS and PDOS
and hence thermodynamic and transport properties at Fano

resonance. Given a sample, for example a quantum dot, a
theoretician would like to know the Hamiltonian and hence
the exact impurity configuration inside the dot. This is in
principle impossible to know for a single sample. Supposing
it is known, a theoretician can proceed by solving equations
like the Kohn–Sham equation [8] to find the effective potential
Veff. The effective potential is a purely theoretical concept
that is of no importance to experimentalists. However, once
the effective potential is determined, the density and density
of states can be determined theoretically. Experimentally
however, one can bypass all this. The quantum dot can be
plugged into the experimental set up of [10, 12, 13, 17] and
one can directly measure the transmission probability |t11|2,
transmission phase Arg(t11), reflection probability |r11|2 and
reflection phase Arg(r11). Substituting them in equations (36)
and (37), one can get the PDOS and DOS respectively, at Fano
resonance. So the determination of the effective potential or
impurity configuration is of no consequence. The transport
and thermodynamic properties of mesoscopic systems directly
depend on DOS and PDOS and this has been reviewed in detail
in [22].
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